Complementarity Problems over Symmetric Cones: A Survey of Recent Developments in Several Aspects
نویسندگان
چکیده
The complementarity problem over a symmetric cone (that we call the Symmetric Cone Complementarity Problem, or the SCCP) has received much attention of researchers in the last decade. Many of studies done on the SCCP can be categorized into the three research themes, interior point methods for the SCCP, merit or smoothing function methods for the SCCP, and various properties of the SCCP. In this paper, we will provide a brief survey on the recent developments on these three themes.
منابع مشابه
A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملInterior Point Trajectories and a Homogeneous Model for Nonlinear Complementarity Problems over Symmetric Cones
We study the continuous trajectories for solving monotone nonlinear mixed complementarity problems over symmetric cones. While the analysis in [5] depends on the optimization theory of convex log-barrier functions, our approach is based on the paper of Monteiro and Pang [17], where a vast set of conclusions concerning continuous trajectories is shown for monotone complementarity problems over t...
متن کاملAn improved infeasible interior-point method for symmetric cone linear complementarity problem
We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملA Continuation Method for Nonlinear Complementarity Problems over Symmetric Cones
In this paper, we introduce a new P -type condition for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P -type condition represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically.
متن کامل